黄泽寰

黄泽寰

研究员

北京大学

黄泽寰博士于2023年3月加入北京大学材料科学与工程学院,担任研究员、独立PI。研究组的学术研究聚焦在“高性能超分子材料的精准构筑与生物医用”,目前致力于开发动态可逆的分子间相互作用,来设计并构筑结构精细可控、性能综合全面的功能超分子凝胶/弹性体/塑料,从而服务于软组织修复和替代医学的应用场景。Art is I,Science is We,热烈欢迎有热情、爱创造、主动好学的青年来加入我们!

研究兴趣
  • 超分子材料科学
  • 软组织医学工程
  • 高性能动态聚合物
教育与工作经历
  • 研究员, 2023-

    北京大学材料科学与工程学院

  • 玛丽居里博士后, 2018-2022

    剑桥大学化学系, 合作导师:Oren A. Scherman 教授

  • 理学博士学位, 化学, 2013-2018

    清华大学化学系, 导师:张希 教授

  • 理学学士学位, 化学, 2009-2013

    清华大学化学系

最新成果

Advancing Flexible Sensors through On-Demand Regulation of Supramolecular Nanostructures
Supramolecular chemistry fostered advancements in flexible sensors by manipulating nanoscale and molecular structures within soft materials. ACS Nano (2024)
Advancing Flexible Sensors through On-Demand Regulation of Supramolecular Nanostructures
Biomimetic Entropy-Dominant Molecular Hinges with Picomolar Affinity
Supramolecular ‘retinal-opsin’: host-induced entropy-dominant molecular hinges with ultrahigh binding affinity are devised to mirror the natural retinal-opsin cycle. J. Am. Chem. Soc. (2024)
Biomimetic Entropy-Dominant Molecular Hinges with Picomolar Affinity
Highly stretchable dynamic hydrogels for soft multilayer electronics
Stretchable power source:supramolecular poly (ionic) networks with excellent mechanical properties and conductivity enable the soft multi-layer hydrogel devices for integrated bioelectronic platforms. Sci. Adv. (2024)
Highly stretchable dynamic hydrogels for soft multilayer electronics
Tissue-mimetic supramolecular polymer networks for bioelectronics
Stand-alone bioelectrode: achieving tissue-like mechanical properties within conducting supramolecular networks enables fabrication of metal-free, intrinsically-stretchable bioelectrodes. Adv. Mater. (2023)
Tissue-mimetic supramolecular polymer networks for bioelectronics
Recent advances in MXene-based aerogels: fabrication, performance and application
A comprehensive review on the recent advances of MXene-based aerogels is provided. Adv. Funct. Mater. (2023)
Recent advances in MXene-based aerogels: fabrication, performance and application
Highly compressible glass-like supramolecular polymer networks
Slow means strong: retarding crosslink dissociation kinetics within supramolecular networks enables fabrication of glass-like soft materials with ultra-compressibility. Nat. Mater. (2022)
Highly compressible glass-like supramolecular polymer networks